Free Stochastic Measures via Noncrossing Partitions Ii

نویسندگان

  • MICHAEL ANSHELEVICH
  • M. ANSHELEVICH
چکیده

Rigorous definitions of all these objects in terms of Riemann sums are given below. These definitions were motivated by [RW97], where corresponding definitions were given for usual Levy processes. There is a number of differences between the classical and the free case. First, the free increments property implies that Stπ = 0 unless π is a noncrossing partition. Second, the point of the analysis of [RW97] was that while we are really interested in the stochastic measures Stπ, these are rather hard to define or to handle. However, by use of Möbius inversion these can be expressed through the Prπ. It is easy to see that if the increments of the process X commute, in the defining expression for Prπ all the terms corresponding to the same class can be collected together, and the result is just a product measure over the classes of the partition, Prπ = ∆B1∆B2 · · ·∆Bk . So in this way stochastic measures St can

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Free Stochastic Measures via Noncrossing Partitions

Abstract. We consider free multiple stochastic measures in the combinatorial framework of the lattice of all diagonals of an n-dimensional space. In this free case, one can restrict the analysis to only the noncrossing diagonals. We give definitions of what free multiple stochastic measures are, and calculate them for the free Poisson and free compound Poisson processes. We also derive general ...

متن کامل

A noncrossing basis for noncommutative invariants of SL(2, C)

Noncommutative invariant theory is a generalization of the classical invariant theory of the action of SL(2,C) on binary forms. The dimensions of the spaces of invariant noncommutative polynomials coincide with the numbers of certain noncrossing partitions. We give an elementary combinatorial explanation of this fact by constructing a noncrossing basis of the homogeneous components. Using the t...

متن کامل

ON 2-REGULAR, k-NONCROSSING PARTITIONS

In this paper we prove a bijection between 2-regular, k-noncrossing partitions and k-noncrossing enhanced partitions. Via this bijection we enumerate 2-regular, 3-noncrossing partitions using an enumeration result [1] for enhanced 3-noncrossing partitions. In addition we derive the asymptotics for the numbers of 2-regular, 3-noncrossing partitions using the BirkhoffTrijtzinky analytic theory of...

متن کامل

Pairs of noncrossing free Dyck paths and noncrossing partitions

Using the bijection between partitions and vacillating tableaux, we establish a correspondence between pairs of noncrossing free Dyck paths of length 2n and noncrossing partitions of [2n + 1] with n + 1 blocks. In terms of the number of up steps at odd positions, we find a characterization of Dyck paths constructed from pairs of noncrossing free Dyck paths by using the Labelle merging algorithm.

متن کامل

ON k-NONCROSSING PARTITIONS

In this paper we prove a duality between k-noncrossing partitions over [n] = {1, . . . , n} and k-noncrossing braids over [n − 1]. This duality is derived directly via (generalized) vacillating tableaux which are in correspondence to tangled-diagrams [6]. We give a combinatorial interpretation of the bijection in terms of the contraction of arcs of tangled-diagrams. Furthermore it induces by re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002